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kiEOTaqWI-n3JIaraeTcR ~HT~~IIHBHH~ meTon onpenenemu3 ~wc~naqki~ xieprmi B noToKe 
ABllmyrqeticH ~HAKOCTII. AaeTcR MeTOAHKa paw&a TpaHC3ByKOBOrO aAHa6aTWieCKOrO 

TeYeHEIH. HaOCHOBaHK~COnOCTaB~eH~~paC~&TH~Xpe3y~bTaTOB~~aHH~XOn~TanOKa3~Ba- 
eTCH, 'iTO IIpeAIIOCbIJIKH, JIe?KaIIJHe B OCHOBB TeOpHH, XOPOIUO IIO~TBep~AaIOTCR B TpaHCaBy- 
KOBOZi o6nacTn TeqeHHFI. OTMWaeTCfl II 06Cym&W!TCH B@@?KT 3aTyXaHllH Typ6yJIeHTHOCTEI 
npn nepexone sepes cKopocTb 3ByKa. BaJIaraeTcn MeToAnKa 0npeAeneHm TonwsHbr 

BbITeCHeHHR IlO AaHHblM OAHOMepHbIX IlpOAyBOK. 

NOMENCLATURE 

a, 

e, 

F, 

velocity of sound; 

base of natural logarithm; 

cross sectional area of 

channel ; 
dimensionless cross sec- 

tional channel area; 

index of an adiabatic 

line; 
. 

, dimensionless factor; 

Greek symbols 

s* 3 

x2 
a*’ 
du 

CL = FZ’ 

P> 
T 

7= -, 
T* 
s 

(j-z.=- 
R’ 

friction work; 

pressure ; 
entropy; 

velocity; 

co-ordinate; 

dimensionless co-ordi- 

nate. 

attenuation thickness; 

dimensionless velocity; 

coefficient ; 

density; 

dimensionless tempera- 

ture; 

dimensionless entropy; 

ij =fp/(k-u, 

Suffixes 

dimensionless function. 

8, 

*9 

0, 

isentropic process; 

critical cross section; 

initial state. 

1. PRELlMINARY REMARKS 

THE internal problem in gas dynamics, in general, 

consists in determining the laws of change in 

parameters of the medium moving along a 

channel under the influence of external forces. 

This problem is a very complicated one. Even in 

the simplest case of the stationary process when 

the energy exchange is absent (stationary 

adiabatic flow along a channel with fixed walls) 

the analytical investigation involves some diffi- 

culties which are almost insuperable. Under 

conditions investigated, the problem in principle 

reduces to establishing consistency between the 

spatial change of parameters of a medium and 

the known geometry of the channel. However, 

the situation is complicated to the greatest degree 

by the fact that this consistency does not reveal 

itself distinctly since the geometric effect is 

superimposed by dissipative effects, the intensity 

of which depends on the state of the moving 

medium. A fixed wall is a primary source of 

energy dissipation. The disturbances propagate 

into the flow due to an appropriate mechanism 

conditioned by the internal interaction of the 
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elements of a moving liquid, A very complicated 
spatial pattern of flow results. This is the object 
of the present study. Considerable simplification 
may be achieved by substitution of this pattern 
by a one-dimensional scheme. The one-dimen- 
sional model of ftow, the nature of which is 
connected with the idea of localization of all the 
dissipative effects directly on the surface of a 
wall, deviates considerably from real conditions 
of a flow. However, as is known, one-dimensional 
representation turns out to be very rewarding in 
investigations of many internal gas dynamic 
problems. 

Within the limits of one-dimensional problems 
the intensity of dissipative effects is described in 
summary form in terms of a specific quantity 
namely the coefficient of resistance (or the co- 
eflicient of friction with which it is closely tied). 
Physically, this quantity is a measure of the ratio 
of energy, dissipated over an elementary portion 
of a channel (and related to dimensionless unit of 
its length), to the kinetic energy of the moving 
medium in the given section. The resistance 
coefficient is marked for the great simplicity of 
both its concept and of the character of opera- 
tions, when applied to constant density fluids. 
As a characteristic of a gas dynamic flow, how- 
ever, this quantity is expressed through the con- 
cept which is not free from unfavourable 
conditions which lead to fairly complicated 
experimental and numerical procedures. Never- 
theless, the resistance coefficient is widely used 
as one of the basic values in theoretical investiga- 
tions and engineering calculations dealing with 
a liquid motion of variable density. If only 
adiabatic flows are taken into account, and 
consequently, the role played by the resistance 
coefficient in the modern theory of convective 
heat transfer is not considered, the main reason 
why this concept has endured should be sought 
in the fact that for a channel with the given 
surface roughness the resistance coefficient may 
be taken as a value depending on the Reynolds 
number alone (at least, at velocities of flow not 
greatly exceeding the velocity of sound). As a 
matter of fact, it means that the influence of 
compressibility on the intensity of energy dissipa- 
tion may be neglected. Formally it means that 
one may take into consideration a constant value 
of the resistance coefficient, since it is a weak 

function cf the Reynolds number, varying but 
slightly over the length of a channel. It is easy to 
see the advantages gained due to this circum- 
stance. However, at present one may consider 
it to be quite established that at flow velocities 
close to sonic the resistance coefficients start to 
decrease noticeably [I, 21. Such changes are very 
marked directly in the transonic region. In any 
case we deal here with effects which cannot be 
neglected. 

Thus, when studying near-sonic Ilow regions 
one has to face new circumstances which cast 
doubt on the expediency of preserving the 
system of investigation based on the concept of 
the resistance coefficient, other more effective 
methods of approach to energy dissipation must 
be evolved. When considering the possibilities 
which arise in this case, we take as a starting- 
point the notion that in some way or other it is 
expedient to associate the problem studied with 
the entropy concept, a single moving-medium 
parameter of state, change of which may be 
related to the amount of dissipated energy (since 
energy dissipation is a single, physically possible 
reason for entropy change under the conditions of 
an adiabatic process). This approach is based on 
very general concepts. However, one may in- 
deed go further by considering the flows investi- 
gated to have velocities which differ but slightly 
from sonic. A quite different picture of entropy 
change, on the one hand, and of change in other 
moving-medium parameters, on the other, over 
the length of a channel, is a highly characteristic 
feature for this region of flow. Indeed, a sharp 
increase in the intensity with which all the 
parameters (velocity, pressure, temperature and 
density) change over the length is one of the 
main effects arising as sonic velocity is 
approached. Entropy is an exception, as it 
continues to increase at constant rate along a 
flow. Thus, within the region of flows which 
interested us, an entropy change along the axis 
of a channel is slow as compared to the change 
of other state parameters. This peculiarity in 
behaviour of entropy leads to the idea that the 
actual entropy change over a given length may 
be replaced by a linear approximation. This is 
quite advantageous. We use this approach as 
the basis of a new quantitative method of 
investigation of an energy dissipation process. 
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Natural as it is, the idea of a linear law of 
entropy change over the length is, of course, a 
special hypothesis (“linearity hypothesis”) and 
must be verified experimentally. 

2. ENTROPY METHOD 

The proposed method of studying energy 
dissipation in a moving medium, which is 
referred to as “the entropy method”, is con- 
sidered in detail in [2]. Here we shall confine 
ourselves, therefore, to a short account of the 
principles. 

Under the conditions of an adiabatic flow the 
amount of dissipated energy may be presented 
as 

dlf = Tds (1) 

where dlf is the friction work on an elementary 
portion related to a mass unit of a moving 
medium, ds is the corresponding entropy change, 
T is the thermodynamic temperature. 

Let us reduce equation (1) to dimensionless 
form. And it will be considered that the equa- 
tions valid for an ideal-gas state may be applied 
to a moving medium. We obtain 

dlf 
RT, =rda 

where T, is the temperature at a critical section, where 

is the dimensionless temperature, a, is the critical 
velocity, R is the gas constant. 

Note, that here the dimensionless temperature 
is related to the temperature in the critical 
condition. It differs from a normally applied 
dimensionless temperature (related to the stag- 
nation temperature) by the factor (k + 1)/2. 

Now we may express do in terms of dimension- 
less variables [l] and get 

Now on the basis of the linearity hypothesis 
we introduce a special value p by the equation 

1 dT dv 
doECl +-;, 

For the entropy method the coefficient p 
assumes the value of a fundamental character- 
istic of hydrodynamic properties of a channel. 

Further relationships are obtained quite 
easily. Assuming 2 = 0 for a critical section, we 
get from equation (7) 

hence, due to the law of constant mass flow, 

1 dT dw dF -- do--k_l -+;+z. 

In # = ~2, 
or 

* = eG. (8) 

It is useful to give this result in another form. 
Under the conditions of isentropic flow 

In dimensionless parameters this equation may 
be arranged to give 

or 

Denote 

Then 

do = d In (jMl (k-l)). (2) 

# Efi+’ (k-1). (3) 

Apparently, it is in many respects more con- 
venient to use the value # than IJ. As it follows 
directly from equation (3) at a critical section 
the value # (as well as the allied factors f, h, T 
forming it) reduces to unity. 

The essential advantage of the system of 
reduced parameters lies in the fact that they are 
interconnected as single valent functions and 
therefore, the prediction of one determines all 
of them. 

In particular, expressing T in terms of h, we 
obtain 

1 - k!~91”k-1’ (6) 

da d In + 
c”=G = T = const. (7) 
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II, = const. = 1 

and, correspondingly, 

Therefore 

Note that the value l/f8 for the given h equals the 
corresponding value of the gas dynamic function 
4. 

Substituting this expression into equation (3), 
we get 

Now equation (7) is reduced to the form 

fs = e-P;f. (9) 

Equation (9) refers to the relationship between 
areas (equation of areas) determining the flow 
expansion ratio under the conditions of a real 
and equivalent flow (for which the velocity 
curves X =f(R) are identical). However, one 
should be aware that at the same time the value 
jb is a certain gas dynamic function which is in 
a mutual single valent relationship with the 
reduced medium parameters 

The real meaning of the equation consists, there- 
fore, in establishing the law for the variation in 
flow over the length of channel (3) for a given 
profile (the form of the function f =f(X) is 
assumed to be known from the boundary condi- 
tions). The problem is solved. Equation (9), 
however, contains the coefficient TV which serves 
as a constant parameter and should be predicted. 
This question needs special consideration. 

3. SOME EXPERIMENTAL RESULTS 

The coefficient p is determined by equation 
(7) in the form: 

d In 4 
C”=-z 

Thus, the problem reduces to determination of 
the form of the function #J(Z). It is immediately 

seen from equation (6) that distribution of the 
function # along the axis is conditioned by the 
laws of a conjugated change of the cross section 
and parameters of the flow over the length of a 
channel (for the character of the relation be- 
tween change in flow parameters and that of a 
channel profile is dependent on the development 
of the energy dissipation process). Consequently, 
in each particular case the determination of the 
form of the function $ = J&X) reduces to 
establishing the relation between h(Z) and f(Z). 
Such a co-ordination of the values h and,f may 
be realized on the basis of experimental data 
which at present can be carried out with adequate 
accuracy [I, 2, 31. 

The method applied is based on the static 
pressure (p) distribution over the length of a 
channel and, consequently, the experimental 
part consists in determining the shape of the 
pressure curve. Appropriate measurements are 
taken with the help of a “string-type” probe 
stretched along the axis of a channel [l]. Experi- 
mental data available at present allow some 
reliable conclusions to be drawn and, in the 
first place, assessment to be made of the reliabil- 
ity of the linearity hypothesis and of the regions 
to which it applies. 

In Figs. 1 and 2, diagrams which were the 
first to illustrate the validity of the linearity 
hypothesis are plotted. They represent a very 
descriptive form of verification of the fact that 
the law of a velocity change over the length of a 
channel, obtained from calculation with the 
assumption of the constant coefficient CL, agrees 
with the experimental curve. The scheme of 
plotting consists of the following. In the h - S 
plane the results of calculation are given in the 
form of a family of curves with the parameter p. 
The curves corresponding to monotonically 
decreasing values of p are located one above the 
other. The curve of the isentropic state change 
corresponding to the value p = 0 makes up the 
upper border of the family. Experimental points 
are plotted on this very plane. 

Figure 1 represents the results obtained from 
an investigation of a near-sonic flow in an exit 
portion of a tube with a constant cross section. 
Note that under these conditions, despite the 
absence of geometric effects, a change of para- 
meters along the axis of a channel occurs already 



INVESTIGATION OF TWdW3ONIC ADIABATIC FLOWS 893 

0.86 

0.80 

FIG. 1. Analytical curves and ex~rimental points for X =f(Z) at various values of p at the 
exit portion of a cylindricai tube. 

@ 0 0 regime 4, Re = 7.00 x 105; G = 0.249 kg/s 
x * regime 9, Re = 6.25 x 106; G = 0.222 kg/s 

sn~cient~y rapidly. Therefore, the considerations 
which lie in the basis of the linearity hypothesis 
hold true. The relations are simpler in the case of 
a channel of a constant cross section. Apparently, 
in this case we must assume that f = 1 and 
correspondingly, $ = W’ (k--l). The line X = 1 
is the upper boundary of the family. It is 
distinctly seen from the charts that, despite the 
density of the network (the interval for p is about 
5 per cent), experimental points are located on 
narrow strips bounded by adjacent curves over 
a considerable range right up to values of h of 
the order O-92. 

Figure 2 refers to the case of a supersonic 
flow in an axisymmetric channel of a small 
conicity. It is easy to see that in this case theo- 
retical and experimental results agree well be- 
tween themselves. Experimental points give a 
quite distinct curve which over its whole length 
can be referred to the same family (obtained by 
calculation), the parameter ~1 being of the value 
close to O-014, Further experiments on super- 
sonic nozzles of small (but different) conicity 
convincingly proved the assumption that the 

coe~cient p is constant for the whole investi- 
gated range of X (up to the values of X of the 
order 1.5). The obtained values to, of t.~ lie 
within the comparatively short interval from 
O-012 to O-018. 

The region close to the velocity of sound (e.g. 
from h = 0.92) requires special consideration. 
It is easy to see that in this case experimental 
points have a steeper initial gradient than the 
analytical curves. Such a distribution of experi- 
mental points should be, apparently, attributed to 
the fact, that the intensity of energy dissipation 
decreases under the present conditions occnr- 
ing near the critical state. No other explanations 
of the studied peculiarity in the position of 
experimental points are admissible since the 
coefficient p is directly related to the intensity 
of dissipation. Therefore, in contrast to the 
considerations on the possible causes of the 
sharp decrease in the resistance coefficient [I], 
we state here that the decrease in the coefficient 
p is caused by some real physical effect that 
results in weakening of dissipation mechanism. 
The peculiarity in behaviour of the coefficient TV 
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=o 
= O-004 

I *55 = 0~006 

-0~011 

I.50 
=0*014 

= 0.016 

1.45 = 0.020 

=0*024 
I.40 

I-00 
0 I 2 3 4 5 6 7 8 9 IO 

Fro. 2. Analytical curves and experimental points for A = f(Z) at various values of p in a 
channel of a variable cross section (conicity angle = l”273. 

makes us think of turbulence attenuation as a 
possible source peculiar to the hydrodynamic 
situation of a transonic region. This idea is con- 
firmed by some other experimental facts ob- 
served in flows with velocities highly close to the 
velocity of sound (such as the unusual character 
of a flow round blunt bodies, laminarization of 
a velocity profile, change in velocity oscillo- 
grams). It is natural to relate the effect of 
attenuation to the initial cause, i.e. to the action 
of the considerable negative pressure gradients 
typical of near-critical states. Such an assump- 
tion as our idea of turbulence attenuation, 
touching upon the very basic properties of a 
flow and having extremely far-reaching implica- 
tions, should be, of course, very thoroughly 
founded. With appropriate caution therefore, 
we advance it for the present as a preliminary 
hypothesis. 

4. ENTROPY METHOD AND A 
TWO-D~N~ONAL FLOW MODEL 

The entropy method in its basic concept, 
appertains to a one-dimensional theory. This, 
however, does not exclude it from being applied 
to studying the problems occuring clearly out- 
side those of a one-dimensional model. We will 
show that application of the entropy method 
makes it possible to fmd a very simple way for 
solving the main problem of the two-dimensional 
theory calculation of attenuation thickness [4]. 

We will deal with the case of a flow along a 
conical supersonic nozzle, i.e. along an axisym- 
metrical short channel (a flow with boundary 
layers not closed up), the attenuation thickness 
6* may be given, according to the definition, as 

6*=&--R (10) 

where R and R' are radii of cross sections (F and 
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F) corresponding to the conditions of real and 
ideal (non-viscous) flow. These conditions are 
connected between themselves by the condition 
that the mass flow and the velocity distribution 
along the length of the axis and of static pressure 
should be identical. The problem is thus reduced 
to determination of R’ for a given R. We may 
solve it easily with the help of the entropy 
method. And, as it is usually assumed, we shall 
neglect energy dissipation in the subsonic por- 
tion of the nozzle, i.e. we shall assume that a 
boundary layer starts growing from the critical 
cross section. 

Compare three different flow patterns: real 
flow, ideal flow and equivalent isentropic flow. 
Under real flow conditions to each given section 
(i.e. to each section x or X) there is assigned 
definite values of the parameters, which have 
been averaged in accordance with ‘the single 
dimensional model : velocity fl or A, temperature 
T, 7, density p, p/p,,, and also those related to 
the potential flow region (isentropic) according 
to two dimensional representations: w (or h), T 
(or T), p (or (p/pJ). For pressure, of course, only 
one value of p or p/p,, is possible. Moreover, the 
area of a cross section F = rRa (or f) is intro- 
duced. With regard to two other cases (which 
we understand to be in strict accordance with 
the definitions given above) such a duality does 
not take place. An ideal flow is represented by 
the values of velocity w’(h’), temperature 
T’(T’), density p’(p’/p,J, pressure p’(p’/p,,) and 
cross sectional area F’ = TR’~C~‘). Correspond- 
ingly, for an isentropic flow we have the values 
W.&Q, Ts(~s), P~Ps/P~), PS(P~P,,) and Fdfs). 
According to the definition we should have: 
w’ = w(h’ = h); T’ = T(,-’ = T); p’ = p; $ = P 
and equally w8 = IV(& = A); Ts = T(T~ = b). 
Moreover, on the basis of area equation (9) one 
getsf, =fe- pz. Finally, all three cases are con- 
nected by the condition of identity of mass flow 
G’ = Gs = G. 

Now it is easy to see how the solution can 
proceed. To determine R’ it is sufficient to find 
h’ = X since under the conditions of an ideal 
flow the reduced area (and then F’ = f ‘F’) is 
directly expressed in terms of the reduced 
velocity. And for the ideal flow the reduced 
velocity may be simply related to pressure 
since it follows from T/T,, = (p/p,,) W-V/k that 

We see that the problem is reduced to the deter- 
mination of static pressure under the conditions 
of a real flow. Here the following method of a 
solution is possible. The demand of identity of 
the rate (Gs = G) leads to the relation FP = F8ps, 
hence 

(11) 

However, ps is expressed in terms of X, = x as 

( 

k-l 

1 

kl (k-l) 

ps=po l-k+lx’: * 

As to the value X, it may be found directly as a 
function of the reduced area in an isentropic 
flow& = f e-p%. 

Thus, there is the following procedure of 
solution. First, we determine fs by the given 
area of a real channel. Then, from the tables of 
gas dynamic functions we find h, = 1 and pa. 
Further, from equation (11) we obtain the real 
pressure p = p’ and the dimensionless velocity 
h’ under the conditions of an ideal flow (equal 
to the reduced velocity of a potential core of a 
flow). From the tables of gas dynamic functions 
we define f’ and then I;’ and 6* in accordance 
with the values of X’ = X obtained. We see that 
the solution of the problem is very simple. The 
problem is regarded, of course, as purely 
theoretical and reduces to the determination of 
the attenuation thickness S*(X) by the given 
constant value of TV. Any considerations on the 
physical conditions of the boundary layer 
formation and, in particular on the relation of 
flow regime in a boundary layer to the value p, 
do not enter the scope of this problem. Note, 
that equation (1 l), being an analogue of area 
equation (9), is of interest in itself, since it 
allows one to plot an analytical curve of static 
pressure distribution along the axis of a channel. 
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Abstract-An entropy method is presented for determining energy dissipation in a moving fluid. 
Methods for calculation of a transonic adiabatic flow are given. Comparison between the theoretical 
and experimental results shows that the assumptions, being the basis of the theory, are well confirmed 
in a transonic flow region. The effect of turbulence attenuation during transition through the velocity 
of sound is noted and discussed. The methods for determining the thickness of the attenuation 

thickness according to data from single-dimensional blow-down testing are considered. 

RBsum&-Cet article presente une methode “entropique” permettant de determiner la dissipation 
d’energie dam un fluide en Ccoulement. Des methodes de calcul d’un Ccoulement transonique adia- 
batique sont donn&es. La comparaison entre les resultats theoriques et experimentaux montre que les 
hypotheses, qui sont a la base de la theorie, se confirment bien dans la region d’ecoulement transo- 
nique. L’effet d’attenuation de la turbulence au tours de la transition sonique est mis en evidence et 
Ctudie. Les methodes de determination de l’bpaisseur d’attenuation, a partir de don&es experimentales 

relatives a un ecoulement unidimensionnel sont analysees. 

Zusammenfassung-Die Energieverteilung in einer bewegten Fliissigkeit wird mit einer Entropie- 
methode bestimmt. Berechnungsmethoden fiir die adiabate Striimung im Bereich der Schallgeschwin- 
digkeit sind angegeben. Ein Vergleich der theoretischen mit experimentellen Ergebnissen gibt fiir die 
als Grundlage der Theorie gemachten Annahmen gute ifbereinstimmung im Bereich der Schall- 
geschwindigkeit. Der Effekt der wlhrend des Durchgangs durch die Schallgeschwindigkeit fest- 
gestellten Turbulenzdampfung wurde diskutiert. Die Methoden zur Ermittlung der Dampfungsbreite 

aus Daten von eindimensionalen Stromungsversuchen sind beriicksichtigt. 


